ONELAB: Bringing Open-Source Simulation Tools
to Industry R&D and Education

C. Geuzaine', E. Henrotte?, J.-F. Remacle?, R. V. Sabariego3

IDept. of Electrical Engineering and Computer Science, University of Liége, Belgium, cgeuzaine @ulg.ac.be
2iMMC - MEMA, Université catholique de Louvain, Belgium, francois.henrotte @uclouvain.be
3 Dept. of Electrical Engineering (ESAT), EnergyVille, KU Leuven, ruth.sabariego@esat.kuleuven.be

We present the ONELAB software, a lightweight open source toolkit to interface finite elements and related solvers used in a variety
of engineering disciplines, and to construct multi-code models with maximum flexibility, efficiency and user-friendliness. ONELAB

is freely available at http://onelab.info.

Index Terms—QOpen source software, modeling, finite element analysis, education.

I. INTRODUCTION

He industrial and the academic world share a global need
for scientific computation software, in many domains
from mechanical and electrical engineering to chemistry and
biomedicine. While licensing costs for commercial tools are
justified for large companies that use them extensively, we
have witnessed first hand that smaller, more occasional users
cannot afford the costs. Open source software constitutes an
alternative; for scientific computing, professional quality codes
of high scientific value are available in various engineering
disciplines since the early 2000’s: OpenFOAM [1]] for compu-
tational fluid dynamics, Code_Aster [2]] for structural analysis,
GetDP [3]], [4] for electromagnetics. .. These codes are compet-
itive when compared with their commercial counterparts, with
regard to both their capabilities and their performance [5]], [6].
However, these tools still have a marginal impact in small-
and medium-size businesses and in education. We think that
the main reason is their lack of a common easy-to-use inter-
face (for pre- and post-processing as well as for parameter
input), together with scarce (nonexistent) documentation and
examples—at least for the codes originating from academia.
Also, we believe that industry is still reluctant to adopt open
source tools due to the ongoing confusion between ‘“open
source” and “limited”, or “unprofessional” freeware.

This techno-economical analysis coalesces with the fact
that industrial product developers need system-level simula-
tion tools. This means tools with significant multi-physics
capabilities, whereas specialized codes like OpenFOAM and
Code_Aster remain essentially mono-physics. Existing plat-
forms for multiphysics simulations offer solutions, both com-
mercial (e.g. ANSYS Workbench [7] or COMSOL [8]) and
open source (e.g. SALOME [9] or Elmer [10]). However, the
former are again expensive and the latter either lack the sought-
after nimbleness and user-friendliness due to a “heavy-weight”
top-down design, or lack the ability to interactively interface
multiple specialized codes.

This tailored our design goal for the ONELAB (Open

Numerical Engineering LABoratory) software library, directly
inspired by (and based upon) the design of the open source
CAD modeler, mesh generator and post-processor Gmsh [[11]],
[12]: create a fast, light and user-friendly interface to popular
open source solvers in order to construct multi-code models
with maximum flexibility and efficiency.

II. MULTI-CODE SIMULATIONS

Literature and the authors’ experience show that the stan-
dard approach to multiphysics modelling by addition of extra
functionality to a reference solver has severe limitations. The
additional modules must be (at least partially) rewritten, and
they remain therefore usually at a rather low level of sophisti-
cation when compared to their equivalents in specialized codes.

The alternative is to proceed by directly interfacing the
specialized software rather than by implementing new func-
tionalities in an existing code. This multi-code approach,
which is also that of a platform like SALOME, allows using
specialized simulation codes always with their latest and most
advanced functionalities. The difference between SALOME
and ONELAB resides in that the latter is designed as a
lightweight toolkit rather than an integrated platform.

IIT. WORKING PRINCIPLES

To deal with multi-code models, which are basically series of
interrelated and logically organised calls to simulation solvers,
ONELAB provides the following elements:

e a scripting language to describe the succession of calls
and tests that make up the multi-code models,

¢ a pooled parameter space acting as a persistent server for
the called solver-clients,

o tools for inter-code communication on local or distant
machines,

o tools for error detection and diagnosis, to check on
whether the simulation runs smoothly and on the overall
coherence of the model.

http://onelab.info

[102]jz v
T~ [103) jz »
[104]jz »
@ Rotor torque 4
v GeioP
[m_3War0] Modelrame
[resTsgat] Ouput les
» Gmsh
- input
™ Saveal time seps
% Remove pravious rsult fles

10 £| @[] it rotor angle [deg]
7 =] Number of poles in FE 1
Frequency domain < Type of analysis

type in stator
[220 || stator vottage (ms)
» Constructive parameters
v Output - Electromagnetics
¥ Current [A)
[72488 k|a
)
[516612 elc
e —
¥ Voltage [V}
o

f A
Wﬁ B
[269.444 Elc

¥ Flux linkage [Vs)
[oB60s64 i|a
=)
| T

v Output - Mechanics

v Torque (N
[po3682 E rotor
[adsie ke sator 3

Run | %+

EXYZC 11 @MSSKADD Done

0.000157

|||||m\<‘"_

Fig. 1. Example of the graphical ONELAB front-end for a parametric
induction motor model.

Practically, ONELAB is thus based on a client-server struc-
ture, with a server-side database and graphical front-end on
the one hand, and local or remote clients communicating
in-memory or through TCP/IP sockets on the other hand.
A peculiarity of ONELAB lies in that it has no a priori
knowledge about any specifics (input file format, syntax, ...)
of the simulation codes it calls. In practice, this is made
possible by having the simulation preceded by a analysis
phase, asking the clients to upload their parameter set to the
server and update their values. The issues of completeness and
consistency of the parameter sets are thus completely dealt
with on the client side: the role of ONELAB is limited to
data centralization, interactive modification by the user and
re-dispatching. The same philosophy applies to the CAD and
post-processing layers, which are handled as regular clients.

There exist two ways of interfacing simulation codes with
ONELAB. Native clients (e.g. GetDP, Gmsh or any C++ or
Python code) use ONELAB as a library and implement the
communication with the server of parameters directly from
within the solver-client’s code. Non-native clients, on the
other hand, work by adding specific ONELAB commands
directly into their input files. They are then interpreted by
ONELAB, very much like a preprocessor would do, in order
to generate valid updated input files for the solver, just before
calling it. Native interfacing is more transparent but also more
demanding. It requires code access (the solver needs be yours
or open source) and an excellent knowledge of the code’s
internal architecture. Non-native interfacing, on the other hand,
is ready-to-use as it uses the client solver through its natural
input channels (input files and comand line options).

IV. OPEN SOURCE VS. COMMERCIAL

The objective of ONELAB is to eventually offer to engineers
and teachers a service similar to that of integrated commercial
multiphysics packages (e.g. COMSOL, or Ansys-Workbench),
but relying on open-source software. There are two main
obstacles to this.

First, most potential users of ONELAB use computers with
proprietary (Windows or Mac) operating systems, whereas
many open-source high-level scientific codes are preferably
distributed for Linux platforms. Multi-code modelling thus
also often implies multi-platform compatibility issues, which
ONELAB solves by providing tools for calling clients on dis-
tant machines (with other operating systems), or by distributing
virtual machines with pre-installed solvers.

Second, software integration as realized in commercial
packages allows extensive a priori testing and validation.
Guaranteed consistency and stability makes up the added
value of the product and justifies its cost. Upstream validation
is however impossible with ONELAB, which is called to
articulate heterogeneous solvers of various origins to build
specific models. Consistency and stability need thus be ensured
a posteriori by the design and the validation of multi-code
template models. The added-value of the ONELAB approach
lies in the distributed models, and not in the software itself.
Fig. [T] shows an example of the graphical ONELAB front-
end for an induction motor template model simulated with
Gmsh [11], [12] and GetDP [3], [4]. All relevant parameters
(geometrical but also those related with the power supply and
the simulation) are made available to the user in the left panel.
This template model can be solved as is, or serve as a model
to be adapted to one’s needs. This and many other examples
can be found on the project’s website: jhttp://onelab.info.

AKNOWLEDGMENTS

This work has been supported in part by the Walloon Region
(WIST3 No 1017086 “ONELAB”, No 1217703 “FEDO”)
and by the Belgian Science Policy (IAP P7/02). The authors
also wish to thank Patrick Dular, Johan Gyselinck, Maxime
Graulich and Emilie Marchandise for their valuable contribu-
tions.

REFERENCES

[1] OpenFOAM, the open source CFD toolbox: http://www.opencfd.co.uk/
openfoam/

[2] Code_Aster: http://www.code-aster.org

[3] P. Dular, C. Geuzaine, F. Henrotte and W. Legros. A General Environment
for the Treatment of Discrete Problems and its Application to the Finite
Element Method. 1IEEE Trans. Mag. 34(5), p 3395-3398, 1998.

[4] GetDP: http://getdp.info

[5] G. Fernandez, M. Meis and F. Varas. Free software for numerical
simulation: industrial applications. Departamento de Matematica Aplicada
II, Universidad de Vigo, Spain. XIII Spanish-French School Jacques-Louis
Lions on Numerical Simulation in Physics & Engineering, Valladolid, 15-
19 september 2008.

[6] A. Nilsson. Some experiences on the accuracy and parallel performance
of OpenFOAM for CFD in water turbines. Lecture Notes in Computer
Science, Volume 4699, p 168-176, 2009.

[7] Ansys Workbench, Platform for Advanced Engineering Simulation: http:
/Iwww.ansys.com/Products

[8] COMSOL: http://www.comsol.com

[9] SALOME, the Open Source Integration Platform for Numerical Simula-
tion: http://www.salome-platform.org

[10] Elmer, Open Source Finite Element Software for Multiphysical Problems:
http://www.elmerfem.org

[11] C. Geuzaine and J.-F. Remacle, Gmsh: a three-dimensional finite element
mesh generator with built-in pre- and post-processing facilities. Int. J.
Numer. Eng, 79(11), pp. 1309-1331, 2009.

[12] Gmsh: http:/gmsh.info

http://onelab.info
http://www.opencfd.co.uk/openfoam/
http://www.opencfd.co.uk/openfoam/
http://www.code-aster.org
http://getdp.info
http://www.ansys.com/Products
http://www.ansys.com/Products
http://www.comsol.com
http://www.salome-platform.org
http://www.elmerfem.org
http://gmsh.info

	Introduction
	Multi-code Simulations
	Working Principles
	Open Source vs. Commercial
	References

